
1/19

Introduction Montezuma’s Revenge progress

Gentle introduction to Deep Reinforcement Learning

06.06.2019

2/19

Introduction Montezuma’s Revenge progress

1 Introduction
Reinforcement learning
Value based methods
Policy gradient methods
Actor-critic
Montezuma’s Revenge game setting

2 Montezuma’s Revenge progress

3/19

Introduction Montezuma’s Revenge progress

Reinforcement learning

Let s ∈ S denote state, a ∈ A – action, τ – trajectory, θ – model parameters, π
– policy, p(st+1|st , at) – transition operator.
The objective of reinforcement learning:

πθ(τ) = pθ(s1, a1, ..., sT , aT) = p(s1)
T∏
t=1

πθ(at |st)p(st+1|st , at)

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st , at)

]

4/19

Introduction Montezuma’s Revenge progress

Value based methods (tabular case)

V π(s) = Eπ

[
∞∑
k=0

γk rt+k+1|St = s

]
,Qπ(s, a) = Eπ

[
∞∑
k=t

γk rt+k+1|St = s,At = a

]

V π =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)
[
rt + γVπ(s ′)

]
Qπ =

∑
s′,r

p(s ′, r |s, a)

[
r + γ

∑
a′

π(a′|s ′)Qπ(s ′, a′)

]

Policy greedy to Q: π′(at |st) =

{
1 if at = arg maxat Q(st , at),

0 otherwise

Bellman equation: Q(s, a)← r(s, a) + γE [V (s ′)]
Steps at each iteration of Value Iteration algorithm:

1 Q(s, a)← r(s, a) + γEs′∼p(s′|s,a) [V (s ′)]

2 V (s)← maxa Q(s, a) (the same as π ← π′)

5/19

Introduction Montezuma’s Revenge progress

Value based methods (tabular case)

6/19

Introduction Montezuma’s Revenge progress

Value based methods: classic DQN

for i = 0, i < N, i + + do
take a step in the environment using some policy and add the transition
(si , ai , s

′
i , ri) to experience replay buffer B

if i%νtarget = 0 then
update target network parameters: φ′ ← φ

if i%νtrain = 0 then
sample a batch of size b

{
(sj , aj , s

′
j , rj)

}
from B

φ← φ− α
∑

j

dQφ

dφ
(sj , aj) (Qφ(si , ai)− [ri + γmaxa′ Qφ′(s ′, a′)])

7/19

Introduction Montezuma’s Revenge progress

Policy gradient methods

Idea: differentiate the reinforcement learning objective:

J(θ) = Eτ∼pθ(τ)

[∑
t

r(st , at)

]
, θ∗ = arg max

θ
J(θ)

J(θ) =

∫
πθ(τ)r(τ)dτ,∇J(θ) =

∫
∇θπθ(τ)r(τ)dτ

Log derivative trick

π(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)

πθ(τ)
= ∇θπθ(τ)

∇θJ(θ) =

∫
πθ(τ)∇θ log πθr(τ)dτ = Eτ∼πτ [∇θ log πθ(τ)r(τ)]

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ait |s it)

)(
T∑
t=0

r(s it , a
i
t)

)

8/19

Introduction Montezuma’s Revenge progress

Policy gradient methods

Algorithm 1 REINFORCE

for i = 0, i < K , i + + do
sample trajectories {τ i}Ni=1 from πθ(at |st) (run the policy)
∇θJ(θ) ≈ 1

N

∑
i

(∑
t ∇θ log πθ(ait |s it)

) (∑
t r(s it , a

i
t)
)

θ ← θ + α∇θJ(θ)

Modern modification – Proximal Policy Optimization (Openai 2017). Does not
allow agent to change policy to much on each iteration.

9/19

Introduction Montezuma’s Revenge progress

Actor-critic

(a) (b)

Figure 1: Network architectures for actor-critic method (a) Two networks design (b)
Shared network design

Algorithm 2 Batch actor-critic

for i = 0, i < K , i + + do
sample {si , ai}Ni=1 ∼ πθ(a|s) (run current policy)
fit V̂ π

φ to sampled reward sums

evaluate Âπ(si , ai) = r(si , ai) + γV̂ π
φ (s ′i)− V̂ π

φ (si)

∇θJ(θ) ≈ 1
N

∑
i ∇θ log πθ(ai |si)Âπ(si , ai)

θ ← θ + α∇θJ(θ)

10/19

Introduction Montezuma’s Revenge progress

Montezuma’s Revenge game setting

11/19

Introduction Montezuma’s Revenge progress

Montezuma’s Revenge game setting

12/19

Introduction Montezuma’s Revenge progress

Hierarchical reinforcement learning

Idea: have several levels of temporal abstractions. Most popular framework for
2 levels: options framework.

Meta-controller a.k.a Manager learns policy over sub-goals

Controller a.k.a Worker learns policy for achieving sub-goals

The main challenge: automatic discovery of sub-goals.

13/19

Introduction Montezuma’s Revenge progress

Hierachical approaches on Montezuma’s Revenge

Hierachical DQN (h-DQN) [?]

manually chosen objects (like door, ladder etc) are used as sub-goals

controller is rewarded for reaching the object chosen by meta-controller

meta-controller and controller have separate deep-Q networks

at first stage meta-controller emits random sub-goals and only the
controller is trained, then controller and meta-controller are trained jointly

Result: maximum average score of 375 is achieved after total 52.5 mln steps in
the environment.

Pixel control [?]

image is divided by grid 6×6 into 36 patches. A sub-goal is movement in a
chosen patch

both controller and meta-controller trained by actor-critic

controller and meta-control share perceptual module

network architecture with LSTM module

Results: the best score of 400 is achieved after 20 million steps in the
environment.

14/19

Introduction Montezuma’s Revenge progress

Hierarchical DQN (2016)

We have 2 neural networks: controller chooses native game actions, given
observation and meta-controller’s ”order” and gets intrinsic reward for obeying
meta-controller. Meta-controller chooses macro-actions given observation.
Objects = actions for meta-controller:

left bottom ladder

right bottom ladder

middle ladder

rope

key

left door

right door

15/19

Introduction Montezuma’s Revenge progress

Hierarchical actor-critic with LSTM architecture

1 At the beginning for a long time meta-actions chosen by the Manager are
random, because the Manager learns only from the sparse extrinsic reward.

2 Random subgoals though allow the Worker to learn to navigate the room.
Some objects like the middle ladder or the rope are easy to get to,
therefore the reward signal that the Worker gets is not sparse. Since the
Worker shares convolutional layers with the Manager, the Manager is also
implicitly trained in this process.

3 At some point the Manager learns the right sequence of subgoals and the
Worker successfully fulfills them. Everything works as it is supposed to.

4 However, following the outline of the pixel control experiment we give the
Worker the shaped reward. The extrinsic reward remains larger than the
intrinsic. Given the discount factor, it is more beneficial for the Worker to
go directly to the key, even if the Manager (due to stochasticity needed for
exploration) directs it to other objects.

5 But the Manager haven given a meaningless order, but still receiving the
extrinsic reward increases state-action value. After a while he starts to
give random orders.

16/19

Introduction Montezuma’s Revenge progress

Exploration in reinforcement learning

The full idea of reinforcement leaning – try it out, see if you like it, and if you
do, try more of that in the future. Ilya Sutskever, head of Tesla AI department

Methods of local exploration in reinforcement learning:

ε-greedy and Boltzmann exploration for DQN methods

introducing entropy term in optimized functional for policy gradient
methods

noisy parameters exploration: sampling network weight from Gaussian
distribution with learned parameters

Non-local methods – reward shaping, introducing exploration bonus term to
reward for visiting states different from previously observed.

17/19

Introduction Montezuma’s Revenge progress

DQN with count-based exploration [?](NIPS)

Figure 2: density model proposed
– Context Tree Switching (CTS)
density model based on a
Bayesian variable-order Markov
model. Takes as input an image
and assigns to it a probability
according to the product of
location-dependent L-shaped
filters, where the prediction of
each filter is given by a CTS
algorithm trained on past images.

Idea: derive pseudo-counts from density model
on states s ∈ S
ρn(x) – probability assigned by density model to
state x given all the previous states
ρ′n(x) – an estimated probability of state x given
x and all the previous states
N̂n(x) – pseudo-count function of x
n̂ – pseudo-count function total

ρn(x) =
N̂(x)

n̂

ρ′n(x) =
N̂n(x) + 1

n̂ + 1

Exploration bonus:

r int = 0.05
(
N̂n(x) + 0.01

)−1/2

Result: the best average score of 3439 is
achieved after 100 million frames.

18/19

Introduction Montezuma’s Revenge progress

Count-based exploration with neural density models [?](NIPS)

Lightened version of PixelCNN [?] used as the density model. Its core is a stack
of 2 gated residual blocks with 16 feature maps (compared to 15 residual
blocks with 128 feature maps in vanilla PixelCNN)

Figure 3: Comparison of performance of DQN agents trained with exploration bonus
derived from different density models

19/19

Introduction Montezuma’s Revenge progress

Successes of RL

1 GO (initial version Alpha Go had DQN+bunch of hacks, Alpha Go is just
DQN)

2 DOTA 2: OpenAI Five plays 180 years worth of games against itself every
day, learning via self-play. It trains using a scaled-up version of Proximal
Policy Optimization running on 256 GPUs and 128,000 CPU cores — a
larger-scale version of the system we built to play the much-simpler solo
variant of the game last year. Using a separate LSTM for each hero and
no human data, it learns recognizable strategies. This indicates that
reinforcement learning can yield long-term planning with large but
achievable scale — without fundamental advances, contrary to our own
expectations upon starting the project.

3 Some people minimise non-differentiable losses for NLP tasks(such as
BLEU)

4 Neural Architecture Search: takes only 12800 examples which is extremely
sample-efficient for RL

	Introduction
	Reinforcement learning
	Value based methods
	Policy gradient methods
	Actor-critic
	Montezuma's Revenge game setting

	Montezuma's Revenge progress

