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Outline

● How do molecules look and function?

● Protein structure and interactions prediction

● Protein-ligand interactions

● Cheminformatics

● Other applications
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Macromolecules: proteins
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Proteins

expressed 
proteins

crystallization microscopy structure
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Proteins: structure prediction

What we have What we want

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP
GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG
IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA
FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

Sequence string

3D protein structure
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Proteins: structure prediction

What we can do

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP
GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG
IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA
FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we have

● Use pieces of structures with similar 
sequence as building blocks
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What we can do
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Shen, Sali. Statistical potential for assessment and prediction of protein structures, 2006
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Proteins: structure prediction

What we can do
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What we have

● Define an energy function to minimize

● Use pieces of structures with similar 
sequence as building blocks

● Extract more features!

a b
d
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Proteins: structure prediction

What we can do

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP
GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG
IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA
FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we have

● Define an energy function to minimize

● Use pieces of structures with similar 
sequence as building blocks

a b
d

● Extract more features!

Other objectives?
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Proteins: structure prediction

What we can do

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP
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What we have

● Use false, but high-quality structures to 
learn
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Proteins: structure prediction

What we can doWhat we have

● Use false, but high-quality structures to 
learn

R,G,B = [119, 172, 225]
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Proteins: structure prediction

What we can doWhat we have

● use false, but high-quality structures to 
learn

● map densities of atoms around of each 
atom, atom types are the channels

● train a CNN!

O_2, N_am, C_aro, ... =
     [0.89, 0.55, 0.02, … ]
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Proteins: structure prediction

What we can do

● use false, but high-quality structures to 
learn

● map densities of atoms around of each 
atom, atom types are the channels

● train a CNN!

Pagès, Charmettant, Grudinin. Protein model quality assessment using 3D oriented convolutional neural networks. Submitted
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Proteins: structure prediction

What we can doWhat we have

● use MSA to find regions that co-evolved 
and thus can be spatially proximate

● make a matrix of contacts between these 
residues

Multiple sequence alignment (MSA) 20
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Proteins: structure prediction

What we can doWhat we have

● use MSA to find regions that co-evolved 
and thus can be spatially proximate

● make a matrix of contacts between these 
residues

● fulfil the constraints of contacts!

● or use them as features

● or train to predict them...

Multiple sequence alignment (MSA) 22



Proteins: structure prediction

Contacts prediction and residual neural networks

Wang, Xu et al. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model, 2017

● diverse features (geometrical, sequence)

● very deep to find high-order correlations
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Proteins: structure prediction

AlphaFold (and not only)What we have

● binary contact matrix → contact distances

● additional scoring CNN 

● AlphaFold uses the whole distribution of contact 
distances to compute likelihood

● this + NN-based scoring can be minimized

AlphaFold abstract and other abstracts: http://predictioncenter.org/casp13/doc/CASP13_Abstracts.pdf, 2018
earlier approach, similar to AlphaFold: Xu. Distance-based Protein Folding Powered by Deep Learning, 2018
nice review: https://moalquraishi.wordpress.com/2018/12/09/alphafold-casp13-what-just-happened 
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Proteins: structure prediction

What we have What we get

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP
GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG
IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA
FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

● template-based methods

● scoring with statistical potentials

● learning on decoys how to score

● co-evolution-based methods

25



Proteins: protein-protein interactions

What we have What we want

● Interaction interface?

● Interaction energy?
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Outline

✓ How do molecules look and function?

✓ Protein structure and interactions prediction

● Protein-ligand interactions

● Cheminformatics

● Other applications
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Proteins: protein-ligand interactions

What we have What we want

Put there another compound?
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Proteins: protein-ligand interactions

What we have What we want

Who will bind?

With what strength?

Correct binding pose?
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Proteins and ligands: data

Features:

● extract them from 3D coordinates

Objectives:

● Kb (affinities) are known for regression

● easier ‘’false’’ structures generation to do 
classification
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Proteins and ligands: data and problems

pose prediction

find the best 3D 
coordinates for 
the known ligand

scoring

affinities prediction, 
energy prediction for 
known ligands

virtual screening

which ligand binds a 
compound?
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Proteins and ligands: molecular docking and scoring

sampling scoring
Lower free binding energy - more 
affine ligands.

A scoring function 

● predicts the binding free energy

● or scores the affinity

● can be a part of sampling

● Markov chain 
Monte-Carlo

● genetic algorithms

● molecular dynamics

● ...
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Proteins and ligands: data and problems

pose prediction

find the best 3D 
coordinates for 
the known ligand

scoring

affinities prediction, 
energy prediction for 
known ligands

virtual screening

which ligand binds a 
compound?
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Proteins and ligands: scoring functions

● Physics-based

Energy terms, often trained with use 
of force fields, robust and rather slow

● Knowledge-based

Radial and angular distributions of 
atoms → statistical potentials 

● Descriptor-based

Various descriptors, sophisticated 
machine learning methods

● Empirical

A combination of energy terms 
trained on affinities data (regression)
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● energy terms

Proteins and ligands: descriptors

Δgi = f(rab)
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● energy terms

Proteins and ligands: descriptors

Δgi = f(rab)

● radial, angular distributions of atoms 
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● energy terms

Proteins and ligands: descriptors

Δgi = f(rab)

● radial, angular distributions of atoms 

● 2D descriptors (molecule is a graph!) 
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● energy terms

Proteins and ligands: descriptors

Δgi = f(rab)

● radial, angular distributions of atoms 

● 2D descriptors (molecule is a graph!) 

● surface descriptors

● score as descriptor (“meta” scoring function)

● ...
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Convex-PL

39

ΔG = ΔH - TΔS

ΔG =  ΔHPL  +  ΔHsolvent - T(ΔSsolvent + ΔSconf + … )



Convex-PL
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ΔG = ΔH - TΔS

ΔG =  ΔHPL  +  ΔHsolvent - T(ΔSsolvent + ΔSconf + … )

knowledge-based 
distance-dependent potential



Convex-PL: knowledge-based potential

Convex-PL ≠ statistical potentials
41Kadukova, Grudinin, J. Comput. Aided. Mol. Des., 2017

● radial distribution functions as descriptors
● w is an unknown vector of interactions

no reference states → solve classification 
problem instead

train w to separate natives and decoys

● perfect for pose prediction
● average at affinities prediction



Convex-PL: knowledge-based potential

42

knowledge-based 
distance-dependent potential

ΔG =  ΔHPL  +  ΔHsolvent - T(ΔSsolvent + ΔSconf + … )

big interfaces bias

CASF Benchmark 2013
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big interfaces bias

CASF Benchmark 2013



ΔG =  ΔHPL  +  ΔHsolvent - T(ΔSsolvent + ΔSconf + … )

Convex-PL: more descriptors

44

knowledge-based 
distance-dependent potential

approximated with a regression model

● solvent descriptors

● conformational entropy descriptors

  ✮ empirical scoring functions-style ✮
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Convex-PL: more descriptors

~ solvent accessible   
   surface area

~ volume
ligand 
flexibility

ΔG =  ΔHPL  +  ΔHsolvent - T(ΔSsolvent + ΔSconf + … )

● continuous

● better hydrophobic effects 
representation

● 3D grid representation

● discrete
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Convex-PL: regression-based model

knowledge-

based score 

Ridge Regression model
✓ better score predictions
✓ smaller bias towards big interfaces

Y = [pK]

X =
solvent rdfs

SASA descriptors

ligand 

flexibility, ,

ΔG =  ΔHPL  +  ΔHsolvent - T(ΔSsolvent + ΔSconf + … )



Convex-PL: regression-based model
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CASF Benchmark 2013



Proteins and ligands: problems

pose prediction

✓ we move the ligand
⨯ receptor moves as well

scoring

⨯ low data quality

virtual screening

⨯ is almost always 1-label 
classification

48



Proteins and ligands: problems

pose prediction

✓ we move the ligand
⨯ receptor moves as well

scoring

⨯ low data quality

virtual screening

⨯ is almost always 1-label 
classification

⨯ receptor flexibility 

⨯ temperature, solvent, entropy 

⨯ ligand coordinates are less accurate than amino acid ones
49
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2zqt

Proteins and ligands: problems
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2zqt 3lp0

Proteins and ligands: problems



Outline

✓ How do molecules look and function?

✓ Protein structure and interactions prediction

✓ Protein-ligand interactions

● Cheminformatics

● Other applications
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Cheminformatics: studying small molecules

What we have What we want

● virtual screening

● chemical properties mapping

● regression towards binding energy, 
toxicity, etc

● generate new molecules

● generate synthesis pathways

● millions of compounds
● partially labeled
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Cheminformatics: descriptors in 2D

What we have
string representation (SMILES)
CCOc1cc(ccc1C1=N[C@@](C)(c2ccc(Cl)cc2)[C@](C)(N1C(
=O)N1CCN(CCCS(C)(=O)=O)CC1)c1ccc(Cl)cc1)C(C)(C)C

CSc1sc(C(=O)N2CCC3(COc4ccc(CN)cc34)CC2)c2ccccc12

54



Cheminformatics: descriptors in 2D

What we have
string representation (SMILES)
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graph representation
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Cheminformatics: descriptors in 2D

What we have
string representation (SMILES)
CCOc1cc(ccc1C1=N[C@@](C)(c2ccc(Cl)cc2)[C@](C)(N1C(
=O)N1CCN(CCCS(C)(=O)=O)CC1)c1ccc(Cl)cc1)C(C)(C)C

CSc1sc(C(=O)N2CCC3(COc4ccc(CN)cc34)CC2)c2ccccc12

fingerprints

● presence of particular fragments

● local environment of each atom in the graph

graph representation
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Cheminformatics: descriptors

Sanchez-Lengeling, Aspuru-Guzik. Inverse molecular design using machine learning: Generative models for matter engineering. 2018
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Cheminformatics: better generalization

RNNs on strings

● grammatical validity?

graph nets

● features are associated with weighted nodes

● several ways to define convolution operation

● recurrent architectures

58Zhou, Li. Convolution on Graph: A High-Order and Adaptive Approach, 2017
There are tons of recent papers!



More applications

expressed 
proteins

crystallization microscopy structure

● these steps can be enhanced

● simulations (molecular dynamics, quantum chemistry) can be either “learned”, or analyzed
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Thank you for the attention!

Sergei Grudinin
Vladimir Chupin
Stephan Redon
Leonard Jaillet
Ilya Igashov
Petr Popov
Andreas Eisenbarth

Nano-D team of Inria
MIPT


