Machine Learning in Structural Bioinformatics

Maria Kadukova

HML Reading Group 16.05.2019

Outline

- How do molecules look and function?
- Protein structure and interactions prediction
- Protein-ligand interactions
- Cheminformatics
- Other applications

|--|

GCT TTT ACT	TTA	тст	CAT	CAA
-------------	-----	-----	-----	-----

GCT TTT ACT	TTA	тст	CAT	CAA
-------------	-----	-----	-----	-----

Proteins

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV What we want

Sequence string

What we can do

 Use pieces of structures with similar sequence as building blocks

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we can do

- Use pieces of structures with similar sequence as building blocks
- Define an energy function to minimize

$$U(d|a,b) = -kT\lnrac{P(d|a,b)}{Q(d)}$$

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV What we can do

- Use pieces of structures with similar sequence as building blocks
- Define an energy function to minimize

Shen, Sali. Statistical potential for assessment and prediction of protein structures, 2006

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we can do

- Use pieces of structures with similar sequence as building blocks
- Define an energy function to minimize

$$egin{array}{lll} \hline a & - & - & - & b \end{array} & U(d|a,b) = -kT\lnrac{P(d|a,b)}{Q(d)} \end{array}$$

• Extract more features!

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we can do

- Use pieces of structures with similar sequence as building blocks
- Define an energy function to minimize

$$egin{array}{lll} \hline a & - & - & - & b \end{array} & U(d|a,b) = -kT\lnrac{P(d|a,b)}{Q(d)} \end{array}$$

• Extract more features!

Other objectives?

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we can do

• Use false, but high-quality structures to learn

What we have

What we can do

• Use false, but high-quality structures to learn

- use false, but high-quality structures to learn
- map densities of atoms around of each atom, atom types are the channels
- train a CNN!

- use false, but high-quality structures to learn
- map densities of atoms around of each atom, atom types are the channels
- train a CNN!

- use false, but high-quality structures to learn
- map densities of atoms around of each atom, atom types are the channels
- train a CNN!

Pagès, Charmettant, Grudinin. Protein model quality assessment using 3D oriented convolutional neural networks. Submitted

- use MSA to find regions that **co-evolved** and thus can be spatially proximate
- make a matrix of contacts between these residues

What we can do

- use MSA to find regions that **co-evolved** and thus can be spatially proximate
- make a matrix of contacts between these residues
- fulfil the constraints of contacts!

Multiple sequence alignment (MSA)

- use MSA to find regions that **co-evolved** and thus can be spatially proximate
- make a matrix of contacts between these residues
- fulfil the constraints of contacts!
- or use them as features
- or train to **predict** them...

Q5E940 BOVIN	M	PREDRATW	KSNYFLKIJ	QLLDDYP	KCFIVGAD	NVGSKQMQ	Q IRMS LRGK	-AVVLMGKNTMMRK	AIRGHLENNPALE	7
RLA0 HUMAN	M	PREDR <mark>A</mark> TW	KSNYFLKI]	QLLDDYP	KCFIV <mark>G</mark> AD	N V <mark>G S</mark> K <mark>Q M Ç</mark>	Q IRMS LRGK	-AVVLMGKNTMMRK/	AIRGHLENNPALE	7
RLA0 MOUSE	M	PREDR <mark>AT</mark> W	KSNYFLKIJ	QLLDDYP	KCFIV <mark>G</mark> AD	N <mark>V G S</mark> K Q M Q	Q IRMS LRGK	- AVVLMGKNTMMRK	AIRGHLENNPALE	7
RLAO RAT	M	PREDR <mark>A</mark> TW	KSNYFLKIJ	QLLDDYP	KCFIV <mark>G</mark> AD	N V <mark>G S</mark> K <mark>Q M Ç</mark>	Q IRMS LRGK	- AVV LMGKNTMMRK	AIRGHLENNPALE	7
RLA0 CHICK	M	PREDR <mark>AT</mark> W	KSN YFMK IJ	QLLDDYP H	KCFVVGAD	NVGSKQMQ	Q IRMS LRGK	- AVV LMGKNTMMRK	AIRGHLENNPALE	7

Contacts prediction and residual neural networks

- diverse features (geometrical, sequence)
- very deep to find high-order correlations

Wang, Xu et al. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model, 2017

Q 5E940_BOYINMPREDRATWKSNYFLKIIOLLDDYPKCFIYGADNYGSKDMOQIRMSLRGK-AVYLMGKNTMMRKAIRGHLENNPALE RLA0_HUMANMPREDRATWKSNYFLKIIOLLDDYPKCFIYGADNYGSKDMOQIRMSLRGK-AVYLMGKNTMMRKAIRGHLENNPALE RLA0_MOUSE	76 76 76 76 76 76
AlphaFold abstract and other abstracts: <u>http://predictioncenter.org/casp13/doc/CASP13_Abstracts.pdf</u> , 2018 earlier approach, similar to AlphaFold: Xu. Distance-based Protein Folding Powered by Deep Learning, 201 nice review: https://moalguraishi.wordpress.com/2018/12/09/alphafold-casp13-what-just-happened	} 8

AlphaFold (and not only)

- binary contact matrix \rightarrow contact distances
- additional scoring CNN
- AlphaFold uses the whole distribution of contact distances to compute likelihood
- this + NN-based scoring can be minimized

MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMP GFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAG IATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIA FGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLRLV

What we get

- template-based methods
- scoring with statistical potentials
- learning on decoys how to score
- co-evolution-based methods

Proteins: protein-protein interactions

What we have

What we want

- Interaction interface?
- Interaction energy?

Outline

- ✓ How do molecules look and function?
- ✓ Protein structure and interactions prediction
- Protein-ligand interactions
- Cheminformatics
- Other applications

Proteins: protein-ligand interactions

What we have

What we want

- Put there another compound?

Proteins: protein-ligand interactions

Proteins and ligands: data

 $\Delta G \sim -RT \ln K_b$

Features:

• extract them from 3D coordinates

Objectives:

- K_b (affinities) are known for regression
- easier "false" structures generation to do classification

Proteins and ligands: data and problems

pose prediction

find the best 3D coordinates for the known ligand

scoring

affinities prediction, energy prediction for known ligands

virtual screening

which ligand binds a compound?

Proteins and ligands: molecular docking and scoring

- Markov chain Monte-Carlo
- genetic algorithms
- molecular dynamics

 $\Delta G \sim -RT \ln K_b$

Lower free binding energy - more affine ligands.

A scoring function

- predicts the binding free energy
- or scores the affinity
- can be a part of sampling

Proteins and ligands: data and problems

pose prediction

find the best 3D coordinates for the known ligand

scoring

affinities prediction, energy prediction for known ligands

virtual screening

which ligand binds a compound?

Proteins and ligands: scoring functions

• Physics-based

Energy terms, often trained with use of force fields, robust and rather slow

• Empirical

A combination of energy terms trained on affinities data (regression)

• Knowledge-based

Radial and angular distributions of atoms \rightarrow statistical potentials

Descriptor-based

Various descriptors, sophisticated machine learning methods

• energy terms $\Delta g_i = f(r_{ab})$

- energy terms $\Delta g_i = f(r_{ab})$
- radial, angular distributions of atoms

- energy terms $\Delta g_i = f(r_{ab})$
- radial, angular distributions of atoms
- 2D descriptors (molecule is a graph!)

- energy terms $\Delta g_i = f(r_{ab})$
- radial, angular distributions of atoms
- 2D descriptors (molecule is a graph!)
- surface descriptors
- score as descriptor ("meta" scoring function)

Convex-PL

 $\Delta G = \Delta H - T\Delta S$

 $\Delta G = \Delta H^{PL} + \Delta H^{solvent} - T(\Delta S^{solvent} + \Delta S^{conf} + ...)$

Convex-PL

 $\Delta G = \Delta H - T\Delta S$ $\Delta G = \Delta H^{PL} + \Delta H^{solvent} - T(\Delta S^{solvent} + \Delta S^{conf} + ...)$

knowledge-based distance-dependent potential

Convex-PL: knowledge-based potential

Convex-PL \neq statistical potentials

- radial distribution functions as descriptors
- w is an unknown vector of interactions

no reference states \rightarrow solve classification problem instead

train w to separate natives and decoys

$$egin{aligned} \min&:rac{1}{2}\mathbf{w}\cdot\mathbf{w}+\sum_{ij}C_{ij}\xi_{ij}\ ext{s.t.}:y_{ij}\left[\mathbf{w}\cdot\mathbf{x}_{ij}+b_i
ight]-1+\xi_{ij}\geq0, \xi_{ij}\geq0 \end{aligned}$$

- perfect for pose prediction
- average at affinities prediction

Kadukova, Grudinin, J. Comput. Aided. Mol. Des., 2017 41

Convex-PL: knowledge-based potential

43

mean ligand area, $Å^2$

Convex-PL: more descriptors

knowledge-based distance-dependent potential

approximated with a regression model

- solvent descriptors
- conformational entropy descriptors

st empirical scoring functions-style st

Convex-PL: more descriptors $\Delta G = \Delta H^{PL} + \Delta H^{solvent} - T(\Delta S^{solvent} + \Delta S^{conf} + \dots)$ ligand ~ volume ~ solvent accessible flexibility H₂N/// surface area OH $w_i=3$ CH # bonds $w_i=3$ $\Delta S^L_{conf} = \log({\ \prod \ }$ $w_i)$ CH. HN $\overrightarrow{k} w_i = 0$ • 3D grid representation • continuous • discrete • better hydrophobic effects representation

Convex-PL: regression-based model

Convex-PL: regression-based model

CASF Benchmark 2013

47

pose prediction

✓ we move the ligand× receptor moves as well

scoring

× low data quality

\bigcirc

virtual screening

× is almost always 1-label classification

pose prediction

✓ we move the ligand× receptor moves as well

scoring

× low data quality

5
\triangleleft
\bigcirc

virtual screening

× is almost always 1-label classification

× receptor flexibility

- × temperature, solvent, entropy
- × ligand coordinates are **less accurate** than amino acid ones

Outline

- ✓ How do molecules look and function?
- ✓ Protein structure and interactions prediction
- ✓ Protein-ligand interactions
- Cheminformatics
- Other applications

Cheminformatics: studying small molecules

What we have

- millions of compounds
- partially labeled

What we want

- virtual screening
- chemical properties mapping
- regression towards binding energy, toxicity, etc
- generate new molecules
- generate synthesis pathways

Cheminformatics: descriptors in 2D

What we have

string representation (SMILES)

CCOc1cc(ccc1C1=N[C@@](C)(c2ccc(C1)cc2)[C@](C)(N1C(=0)N1CCN(CCCS(C)(=0)=0)CC1)c1ccc(C1)cc1)C(C)(C)C

CSc1sc(C(=0)N2CCC3(COc4ccc(CN)cc34)CC2)c2cccc12

Cheminformatics: descriptors in 2D

What we have

string representation (SMILES)

CCOc1cc(ccc1C1=N[C@@](C)(c2ccc(C1)cc2)[C@](C)(N1C(=0)N1CCN(CCCS(C)(=0)=0)CC1)c1ccc(C1)cc1)C(C)(C)C

CSc1sc(C(=0)N2CCC3(COc4ccc(CN)cc34)CC2)c2cccc12

graph representation

Cheminformatics: descriptors in 2D

What we have

string representation (SMILES)

CCOc1cc(ccc1C1=N[C@@](C)(c2ccc(C1)cc2)[C@](C)(N1C(=0)N1CCN(CCCS(C)(=0)=0)CC1)c1ccc(C1)cc1)C(C)(C)C

CSc1sc(C(=0)N2CCC3(COc4ccc(CN)cc34)CC2)c2cccc12

graph representation

fingerprints

- presence of particular fragments
- local environment of each atom in the graph

Cheminformatics: descriptors

Sanchez-Lengeling, Aspuru-Guzik. Inverse molecular design using machine learning: Generative models for matter engineering. 2018

Cheminformatics: better generalization

RNNs on strings

• grammatical validity?

graph nets

- features are associated with weighted nodes
- several ways to define convolution operation
- recurrent architectures

More applications

• these steps can be enhanced

• simulations (molecular dynamics, quantum chemistry) can be either "learned", or analyzed

Thank you for the attention!

Nano-D team of Inria MIPT

Sergei Grudinin Vladimir Chupin Stephan Redon Leonard Jaillet Ilya Igashov Petr Popov Andreas Eisenbarth