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Introduction

In many applications, labeling examples is prohibitive while huge number
of unlabeled data are available.
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Supervised vs Semi-supervised Learning
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Example of partially labeled data
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(b) Semi-supervised classifier
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Related Work
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SSL Classifiers

e Generative models:
n Semi-supervised CEM [McLachlan, 1992]
» Semi-supervised logistic regression [Amini and Gallinari, 2002]
n Deep generative models [Kingma et al., 2014]
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SSL Classifiers

o Generative models:

n Semi-supervised CEM [McLachlan, 1992]
» Semi-supervised logistic regression [Amini and Gallinari, 2002]
n Deep generative models [Kingma et al., 2014]

e Graph-based algorithms:

n Label propagation [Zhu and Ghahramani, 2002]
n Label spreading [Zhou et al., 2004]

e Transductive Learning:

s Transductive support vector machine [Joachims, 1999]
» Self-learning algorithm
[Tir et al., 2005, Amini et al., 2008, Feofanov et al., 2019]
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Transductive Inference

"When solving a problem of interest, do not solve a more
general problem as an intermediate step.”

— Vladimir Vapnik
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Transductive Inference

"When solving a problem of interest, do not solve a more
general problem as an intermediate step.”

— Vladimir Vapnik

e In transductive learning we concentrate on the object of
interest = unlabeled examples.

e Thus, the objective is not the generalization error, but the
error computed on the unlabeled examples.
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Self-learning Algorithm
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Self-learning Algorithm
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Self-learning Algorithm
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Self-learning Algorithm

Xz,{ < Xu\{xl}

Zi+ Zy U{(x,9)}
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Self-learning Algorithm
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Practical Issues in SSL

In practice, how do we

e Tune hyperparameters?

o Estimate our performance?
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Practical Issues in SSL

In practice, how do we

e Tune hyperparameters?
o Estimate our performance?
Possible solutions:
» Exhaustive analysis of your problem?
» Look at behavior of the algorithm on different data sets?

» | heoretical study of the algorithm?
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Automatic Threshold Finding

Univ. Grenoble Alpes

Margin distribution over the unlabelled set
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Automatic Threshold Finding

We look for 6 that minimizes:

E[/{/\g(h>
Eyp(h) = ———.
u|9( ) m(m(x") > 0)
A trade-off between:
& Transductive error (bound) on pseudo-labeled examples,

o Proportion of examples in the unlabeled set that will be
pseudo-labeled.
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Automatic Threshold Finding

We look for 6 that minimizes:

_ Eype(h)
B (h) = m(m(x’) > 0)
A trade-off between:

s Transductive bound for the binary majority vote classifier
[Amini et al., 2008].

s Extension to the multi-class classification was proposed in
[Feofanov et al., 2019].
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Transductive Bounds for the Multi-class Majority Vote
Classifier
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Bayes Classifier

Bqg(x) := argmax, .y, [En~l(h(x) = ¢)]
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Gibbs Classifier

Gq(x) := randp~gh(x)
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Gibbs Classifier
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Margin: Indicator of Confidence

mq(x, ¢) = En~gl(h(x) = ¢)
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Error Measures
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Error rate:
L] Eu(h) = %ZX/EXZ/{ H(h(X,) 7é y,)a
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Error Measures

Error rate:
s Ey(h) := %Zx'exu I(h(x") #y'),
Conditional risk:
« Ru(Bg,i,5) = & Yex, [(Bolx) = DIy = i),
s Ry(Gq.i,j) == u% > wrexy EnQl(h(x) = j)I(y' = i),

The error to predict | given class i.
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Error Measures

Error rate:
s Ey(h) = 4 Ve, LX) #9),
Conditional risk:
s Ru(Bg,i.j) = 3 Xwex, W Be(x) = Iy =1),
v Ru(GQ.i,5) = o Cwexy, EnmQl(h(x') = HI(Y' = 1),

Confusion matrix:

U . (p. . R
» G = (CZ:J)i,F{l,...,K}"" i {

— [Morvant et al., 2012]

0 i=j
Ry(h,i,j) i#j

Vasilii Feofanov Semi-supervised Learning via Transductive Inference: HML Reading Group: Session 1



Error Measures

Error rate:
o Ey(h) = § Ypex, LX) # 1Y),
Conditional risk:
s Ru(Bq,i,j) = o Ywex, UBo(x') = NIy’ = i),
« Ru(Gouivj) = & Crex, Enmal(h(x) = I = i),

Confusion matrix:

U . (.. R
s G =gy, k2 G = {

o
-~
I

Joint conditional risk:
RZ/{ 0 B 77:7j =
.ii(QH(l)? " = NI(y =)L " 9) > 05), - risk
u; Lax'eXy Q(X> =)y = 1) (WLQ(ij) = .J)a risk to

have the conditional error and the margin above 6,
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Confusion Matrix Remark

Remark

The error rate and the confusion matrix are connected in the
following way:

Eu(h) = [|(CK)"pl|; ,

where p = {u;/u} .
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A Transductive Bound the Conditional Risk

Theorem

Y Q and /5 € (0,1], V0 € [0,1]% with prob. at least 1 — 4:

. . , 1
Ruro(Baii) < _int L1590+ 2| ohy - M50+ M5 0]}
1

where
v K7 = R(GQ,4,J) — i,
» Ri(GQ, i,J) is an upper bound that holds with prob. at least 1 —§.

m £;,j Is the average of j-margins in class i and class j is not predicted,

o 159

i (05,7) is proportion of obs. from i with margin in interval [0;,),

ij (t) is the average of j-margins in class i that less than t.
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A Transductive Bound he Conditional Risk

Y Q and /5 € (0,1], V0 € [0,1]% with prob. at least 1 — 4:
o o q <, < 1 5
Rune(Bg,i,j) < _inf {If,; 05,7) + = [ (KD = Mi5() + Mi5(6:)) } ,
v€[0;,1] 0l *

where

L] Kzé,] = Ri(GQa 7'5.]) —&4,5,

» R‘su(GQ, i,J) is an upper bound that holds with prob. at least 1 —§.

m £;,j Is the average of j-margins in class i and class j is not predicted,

[ Ii(§’<)(6j,'y) is proportion of obs. from i with margin in interval [0;,7),

. ij (t) is the average of j-margins in class i that less than t.

Proof

m Bound derived from a solution of a linear program where the error is maximized.
m Constraint: connection between Ryne(Bgq,1,j) and Ry (Gq,i,j).

m The solution of linear program is explicit and is computed in practice.
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Theorem: Remarks UGA
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Suppose
@ The Gibbs conditional risk bound is tight,

@ The Bayes classifier makes its mistakes mostly on examples with low
margins

= the bound is tight.
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Theorem: Remarks

Suppose

@ The Gibbs conditional risk bound is tight,

@ The Bayes classifier makes its mistakes mostly on examples with low
margins

= the bound is tight.

Corollary

Let Ug = (RZ(E((BQa i:j))i,j:{l,...,K}Q’
i#]

where R}/(Bq,1i,7) is defined by Theorem. Then, we have:

Eune(Bq) < H(Ug)T le7

where p = {u; /u}is,.
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Conditional Bayes Error

We look for @ that minimizes:

Evno(Bg)
n(mg(x', Bo(x')) > HBQ (x'))

Enjo(Bq) ==

A trade-off between:

& Transductive error on pseudo-labeled examples (estimated
using Theorem),

@ Proportion of pseudo-labeled examples in Xg,.
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Multi-class Self-learning Algorithm
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Experiment Results on Different Data Sets
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Data set | Info | Score | RF LP OVA-TSVM FSLA g—q.7 MSLA
1= 99

Vowel u = 891 AcC .583 £ .026 577 £ .027  NA 516+ 4 .043 592 + .027
d =10
K=11 F1 572 £ .028 .568 £ .026 NA 493+ £+ .046 .580 + .030

w

acc | .693% +.072 .538% +.039 .812+.039 .516% +.09 .706% + .083
F1 .65% +£.109  .535% + .044 .812+ .038  .372% +£.096 .663% +.118

[N
=
=
e
&

DNA

xaE =
]
w

=109
Pendigits | ¥ = 10883 | ACC .864% +.022 777 +.052 667 +.023 .847% £ .035 .887 & .019
endigits | ;_ ¢

K=10 |F1 .861% +.025 .756% +.069 .656% +.021 .842% +.042 .885 + .02
=175
NIST u=69825 | ACC | .865% & .018 NA NA .8Y 4+.059  .909 + .018
d = 900
K—10 |F1 .863% +.019 NA NA 774% +.077 909 £ .018
=49
u=o9sar9 [ ACC | .67 +.0291 NA NA .619% 4+ .037 .675 & .029
SensIT 4= 100
K—3 F1 654 4 .045  NA NA 578% +.068 .66 + .042

Table: Classification performance on 5 data sets.

L. the performance is statistically worse than the best result on the level 0.01 of
significance.

NA: the algorithm does not converge.
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Questions?
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