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Université Grenoble Alpes
vasilii.feofanov@univ-grenoble-alpes.fr

mailto:vasilii.feofanov@univ-grenoble-alpes.fr


1/27

Outline

1 Introduction

2 Related Work

3 Transductive Bounds for the Multi-class Majority Vote
Classifier

4 Application

Vasilii Feofanov Semi-supervised Learning via Transductive Inference: HML Reading Group: Session 1



2/27

Introduction

In many applications, labeling examples is prohibitive while huge number

of unlabeled data are available.
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Introduction

Supervised Learning:
Labeled data {(xi, yi)}li=1.

⇓
Semi-supervised Learning:
Both labeled {(xi, yi)}li=1 and unlabeled data {x′i}l+ui=l+1

⇑
Unsupervised Learning:
Unlabeled data {xi}ui=1.
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Supervised vs Semi-supervised Learning

Example of partially labeled data
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Supervised vs Semi-supervised Learning

(a) Supervised classifier (b) Semi-supervised classifier
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Assumptions in SSL

(a) Low density separation (b) Cluster assumption
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SSL Classifiers

Generative models:

Semi-supervised CEM [McLachlan, 1992]
Semi-supervised logistic regression [Amini and Gallinari, 2002]
Deep generative models [Kingma et al., 2014]

Graph-based algorithms:

Label propagation [Zhu and Ghahramani, 2002]
Label spreading [Zhou et al., 2004]

Transductive Learning:

Transductive support vector machine [Joachims, 1999]
Self-learning algorithm
[Tür et al., 2005, Amini et al., 2008, Feofanov et al., 2019]
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Transductive Inference

”When solving a problem of interest, do not solve a more
general problem as an intermediate step.”

— Vladimir Vapnik

In transductive learning we concentrate on the object of
interest ⇒ unlabeled examples.

Thus, the objective is not the generalization error, but the
error computed on the unlabeled examples.
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Self-learning Algorithm
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Self-learning Algorithm

Ẑ` ← ∅

ZL Classifier

XU ← XU\{x′}

Ẑ` ← Ẑ` ∪ {(x′, ŷ′)}

x′ ∈ XU

0

1

θ

Thresholding θ

ŷ′
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Ẑ` ← Ẑ` ∪ {(x′, ŷ′)}
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Practical Issues in SSL

In practice, how do we

Tune hyperparameters?

Estimate our performance?

Possible solutions:

Exhaustive analysis of your problem?

Look at behavior of the algorithm on different data sets?

Theoretical study of the algorithm?
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Automatic Threshold Finding

θ < θ∗ θ ≥ θ∗
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Automatic Threshold Finding

We look for θ that minimizes:

EU|θ(h) :=
EU∧θ(h)

π(m(x′) ≥ θ)
.

A trade-off between:

Transductive error (bound) on pseudo-labeled examples,

Proportion of examples in the unlabeled set that will be
pseudo-labeled.
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Automatic Threshold Finding

We look for θ that minimizes:

EU|θ(h) :=
EU∧θ(h)

π(m(x′) ≥ θ)
.

A trade-off between:

Transductive bound for the binary majority vote classifier
[Amini et al., 2008].

Extension to the multi-class classification was proposed in
[Feofanov et al., 2019].
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Bayes Classifier

BQ(x) := argmaxc∈Y [Eh∼QI(h(x) = c)]

h2h1 h3 h5h4

majority vote 
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Gibbs Classifier

GQ(x) := randh∼Qh(x)
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Margin: Indicator of Confidence

mQ(x, c) = Eh∼QI(h(x) = c)

h2h1 h3 h5h4

sum votes 
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Error Measures

Error rate:

EU (h) :=
1
u

∑
x′∈XU I(h(x

′) 6= y′),

Conditional risk:

RU (BQ, i, j) :=
1
ui

∑
x′∈XU I(BQ(x

′) = j)I(y′ = i),

RU (GQ, i, j) :=
1
ui

∑
x′∈XU Eh∼QI(h(x

′) = j)I(y′ = i),

Confusion matrix:

CUh := (ci,j)i,j={1,...,K}2 , ci,j =

{
0 i = j

RU (h, i, j) i 6= j
.

Joint conditional risk:

RU∧θ(BQ, i, j) :=
1
ui

∑
x′∈XU I(BQ(x

′) = j)I(y′ = i)I(mQ(x
′, j) ≥ θj), – risk to

have the conditional error and the margin above θj
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Confusion Matrix Remark

Remark

The error rate and the confusion matrix are connected in the
following way:

EU (h) =
∥∥(CUh )ᵀp∥∥1 ,

where p = {ui/u}Ki=1.
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A Transductive Bound for the Conditional Risk

Theorem

∀ Q and ∀δ ∈ (0, 1], ∀θ ∈ [0, 1]K with prob. at least 1− δ:

RU∧θ(BQ, i, j) ≤ inf
γ∈[θj ,1]

{
I
(≤,<)
i,j (θj , γ) +

1

γ

⌊
(Kδ

i,j −M<
i,j(γ) +M<

i,j(θj))
⌋
+

}
,

where

Kδ
i,j = Rδu(GQ, i, j)− εi,j ,

Rδu(GQ, i, j) is an upper bound that holds with prob. at least 1− δ.

εi,j is the average of j-margins in class i and class j is not predicted,

I
(≤,<)
i,j (θj , γ) is proportion of obs. from i with margin in interval [θj , γ),

M<
i,j(t) is the average of j-margins in class i that less than t.

Proof
Bound derived from a solution of a linear program where the error is maximized.

Constraint: connection between RU∧θ(BQ, i, j) and RU (GQ, i, j).

The solution of linear program is explicit and is computed in practice.
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Theorem: Remarks

Proposition

Suppose

The Gibbs conditional risk bound is tight,

The Bayes classifier makes its mistakes mostly on examples with low
margins

⇒ the bound is tight.

Corollary

Let Uδ
θ := (RδU (BQ, i, j))i,j={1,...,K}2

i 6=j
,

where RδU (BQ, i, j) is defined by Theorem. Then, we have:

EU∧θ(BQ) ≤
∥∥∥(Uδ

θ

)ᵀ
p
∥∥∥
1
,

where p = {ui/u}Ki=1.
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Conditional Bayes Error

We look for θ that minimizes:

EU|θ(BQ) :=
EU∧θ(BQ)

π(mQ(x′, BQ(x′)) ≥ θBQ(x′))
.

A trade-off between:

Transductive error on pseudo-labeled examples (estimated
using Theorem),

Proportion of pseudo-labeled examples in XU .

Vasilii Feofanov Semi-supervised Learning via Transductive Inference: HML Reading Group: Session 1



22/27

Outline

1 Introduction

2 Related Work

3 Transductive Bounds for the Multi-class Majority Vote
Classifier

4 Application

Vasilii Feofanov Semi-supervised Learning via Transductive Inference: HML Reading Group: Session 1



23/27

Multi-class Self-learning Algorithm

ZL

Ẑ`

Classifier

x′ ∈ XU

0

1

θ

Thresholding θ

θ = argminθ∈[0,1]K EU|θ(BQ)

ŷ′
XU ← XU\{x′}

Ẑ` ← Ẑ` ∪ {(x′, ŷ′)}
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Experiment Results on Different Data Sets

Data set Info Score RF LP OVA-TSVM FSLA θ=0.7 MSLA

Vowel

l = 99
u = 891 ACC .583± .026 .577± .027 NA .516↓ ± .043 .592± .027
d = 10
K = 11 F1 .572± .028 .568± .026 NA .493↓ ± .046 .580± .030

DNA

l = 31
u = 3155 ACC .693↓ ± .072 .538↓ ± .039 .812± .039 .516↓ ± .09 .706↓ ± .083
d = 180
K = 3 F1 .65↓ ± .109 .535↓ ± .044 .812± .038 .372↓ ± .096 .663↓ ± .118

Pendigits

l = 109
u = 10883 ACC .864↓ ± .022 .777↓ ± .052 .667↓ ± .023 .847↓ ± .035 .887± .019
d = 16
K = 10 F1 .861↓ ± .025 .756↓ ± .069 .656↓ ± .021 .842↓ ± .042 .885± .02

MNIST

l = 175
u = 69825 ACC .865↓ ± .018 NA NA .8↓ ± .059 .909± .018
d = 900
K = 10 F1 .863↓ ± .019 NA NA .774↓ ± .077 .909± .018

SensIT

l = 49
u = 98479 ACC .67± .0291 NA NA .619↓ ± .037 .675± .029
d = 100
K = 3 F1 .654± .045 NA NA .578↓ ± .068 .66± .042

Table: Classification performance on 5 data sets.
↓: the performance is statistically worse than the best result on the level 0.01 of
significance.
NA: the algorithm does not converge.
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That’s it

Questions?
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